Application of Water Stable Isotopes for Hydrological Characterization of the Red River (Asia)

Nguyen, n., Do, T., Trinh, A

Published in ‘Water’

Abstract

Fraction of young water (Fyw) and mean transit time (MTT, τ¯) calculated from water isotope profiles are valuable information for catchment hydrological assessment, especially in anthropogenically impacted region where natural conditions may not be decisive to catchment hydrology. The calculation of Fyw and MTT were performed on three subsets of δ18O_H2O data collected at the Hanoi meteo-hydrological station, Red River, in three periods; 2002–2005, 2015, and 2018–2019. The mean (min and max) values of δ18O_H2O in rainwater over the three periods are, respectively, −5.3‰ (−11.0 and −1.2‰), −5.4‰ (−10.7 and −1.4‰), and −4.5‰ (−13.9 and 1.7‰). The corresponding values in river water are −8.4‰ (−9.8 and −6.9‰), −8.5‰ (−9.1 and −7.7‰), and −8.4‰ (−9.5 and −7.2‰), respectively. The mean of Fyw calculated from the δ18O_H2O data for different periods is 22 ± 9%, 10 ± 5%, and 8 ± 3%. Mean transit time is 4.69 ± 15.57, 1.65 ± 1.53, and 2.06 ± 1.87 years. The calculated Fyw (MTT) is negatively (positively) proportional to change in reservoir volume over the three periods, which is logical, since reservoirs tend to keep more water in the catchment and slower down water flow. The strong variation of Fyw and τ¯, two essential variables characterizing the catchment hydrology, represents an anthropogenic impact in the Red River system.

Previous
Previous

Electrokinetically-enhanced emplacement of lactate in a chlorinated solvent contaminated clay site to promote bioremediation

Next
Next

Evaluating Future Threats of Climate Change on Riverine and Coastal Chars